52 research outputs found

    Ground Confluence Prover based on Rewriting Induction

    Get PDF
    Ground confluence of term rewriting systems guarantees that all ground terms are confluent. Recently, interests in proving confluence of term rewriting systems automatically has grown, and confluence provers have been developed. But they mainly focus on confluence and not ground confluence. In fact, little interest has been paid to developing tools for proving ground confluence automatically. We report an implementation of a ground confluence prover based on rewriting induction, which is a method originally developed for proving inductive theorems

    Normalisation by Random Descent

    Get PDF

    Improving Rewriting Induction Approach for Proving Ground Confluence

    Get PDF
    In (Aoto&Toyama, FSCD 2016), a method to prove ground confluence of many-sorted term rewriting systems based on rewriting induction is given. In this paper, we give several methods that add wider flexibility to the rewriting induction approach for proving ground confluence. Firstly, we give a method to deal with the case in which suitable rules are not presented in the input system. Our idea is to construct additional rewrite rules that supplement or replace existing rules in order to obtain a set of rules that is adequate for applying rewriting induction. Secondly, we give a method to deal with non-orientable constructor rules. This is accomplished by extending the inference system of rewriting induction and giving a sufficient criterion for the correctness of the system. Thirdly, we give a method to deal with disproving ground confluence. The presented methods are implemented in our ground confluence prover AGCP and experiments are reported. Our experiments reveal the presented methods are effective to deal with problems for which state-of-the-art ground confluence provers can not handle

    Confluence of Orthogonal Nominal Rewriting Systems Revisited

    Get PDF
    Nominal rewriting systems (Fernandez, Gabbay, Mackie, 2004; Fernandez, Gabbay, 2007) have been introduced as a new framework of higher-order rewriting systems based on the nominal approach (Gabbay, Pitts, 2002; Pitts, 2003), which deals with variable binding via permutations and freshness conditions on atoms. Confluence of orthogonal nominal rewriting systems has been shown in (Fernandez, Gabbay, 2007). However, their definition of (non-trivial) critical pairs has a serious weakness so that the orthogonality does not actually hold for most of standard nominal rewriting systems in the presence of binders. To overcome this weakness, we divide the notion of overlaps into the self-rooted and proper ones, and introduce a notion of alpha-stability which guarantees alpha-equivalence of peaks from the self-rooted overlaps. Moreover, we give a sufficient criterion for uniformity and alpha-stability. The new definition of orthogonality and the criterion offer a novel confluence condition effectively applicable to many standard nominal rewriting systems. We also report on an implementation of a confluence prover for orthogonal nominal rewriting systems based on our framework

    Modularity of Convergence and Strong Convergence in Infinitary Rewriting

    Full text link
    Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric \infty

    A Reduction-Preserving Completion for Proving Confluence of Non-Terminating Term Rewriting Systems

    Get PDF
    We give a method to prove confluence of term rewriting systems that contain non-terminating rewrite rules such as commutativity and associativity. Usually, confluence of term rewriting systems containing such rules is proved by treating them as equational term rewriting systems and considering E-critical pairs and/or termination modulo E. In contrast, our method is based solely on usual critical pairs and it also (partially) works even if the system is not terminating modulo E. We first present confluence criteria for term rewriting systems whose rewrite rules can be partitioned into a terminating part and a possibly non-terminating part. We then give a reduction-preserving completion procedure so that the applicability of the criteria is enhanced. In contrast to the well-known Knuth-Bendix completion procedure which preserves the equivalence relation of the system, our completion procedure preserves the reduction relation of the system, by which confluence of the original system is inferred from that of the completed system
    corecore